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Rapid Note

Controlling nonspreading wavepackets
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2 Laboratoire Kastler-Brossel, Tour 12, Étage 1, Université Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France

Received: 27 November 1997 / Accepted: 27 January 1998

Abstract. We show how a static electric field can be used to control the localization of nonspreading
wavepackets of a hydrogen atom driven by a linearly polarized microwave field. This allows for creation of
wavepackets localized on fully stable resonance islands which, at the same time, can easily be excited by
a direct optical transition from a low lying state. A semiclassical analysis is used to predict the energies
and properties of such states.

PACS. 03.65.Sq Semiclassical theories and applications – 05.45.+b Theory and models of chaotic systems
– 32.60.+i Zeeman and Stark effects

Strongly localized wavepackets that follow classical tra-
jectories are an extremely useful tool in studies of the
dynamics of a quantum system, especially in the semiclas-
sical regime. Remarkable progress has been achieved over
the last several years in the understanding of their prop-
erties as well as in their experimental creation and use [1].
It has been a common knowledge that the wavepackets
in nonlinear systems must disperse, limiting their applica-
tion to short time physics only. A breakthrough has been
the recent discovery of nonspreading wavepackets in atoms
driven by external electromagnetic (microwave) fields of
either circular [2] or linear [3] polarization. The electronic
motion is locked to the microwave frequency via the clas-
sical primary nonlinear resonance. The wavepacket then
follows the periodic orbit lying in the center of the stable
resonance island, and is trapped within the island (which
prevents spreading). It is a linear combination of usual
electronic states, and at the same time a single eigenstate
of the combined system: atom + electromagnetic field [3],
i.e. a dressed state or Floquet state. By construction, such
a state evolves periodically in time and therefore does not
spread.
Interesting properties of Floquet states localized in a

classical resonance island have been studied much earlier
[4]. That they can be viewed simultaneously as nonspread-
ing wavepackets has been realized later [3]. An indepen-
dent approach [2] used a specific property of the hydro-
gen atom in a circularly polarized microwave field: in the
frame rotating with the microwave field, the system is
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time-independant. Hence, the periodic orbit at the center
of the resonance island, found first by Klar [5], appears in
the rotating frame as a stable equilibrium point. A local
harmonic expansion of the potential yields the gaussian
form of the wavepacket. For other externally driven sys-
tems, the time-dependence cannot be removed by chang-
ing the coordinate frame. This makes the circular polar-
ization case not generic.

It has been shown [6] that an additional magnetic field
makes the local harmonic expansion much better and can
be also used to stabilize another periodic orbit and thus
create another wavepacket. Both these wavepackets move
around the nucleus on circular orbits making their direct
optical excitation hardly possible.

The full exact quantum studies of wavepacket proper-
ties in circularly polarized microwaves [7] revealed a num-
ber of their interesting properties, in particular the fluc-
tuating character of their residual decay due to ionization
(for details see Ref. [8]). Importantly, the limitations of
the model without magnetic field suggested in [6] seem
to be unjustified or at least exagerated. The single Flo-
quet states found do not disperse by construction, fol-
low closely the classical orbit and are linear combinations
of pure electronic (mostly circular) states. Thus they are
genuine quantum wavepackets in the standard quantum
textbook meaning of this word.

An experimental method for the creation of such wa-
vepackets starts from the excitation of the electron in a
circular state followed by a careful switch on of the mi-
crowave [7,9]. The method requires the preparation of the
atom in an initial pure circular state, a possible but not
trivial task [10]. It is of great importance to find more
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easily accessible wavepackets with the same nonspreading
character. The obvious candidate is the hydrogen atom in
a linearly polarized microwave, the case discussed in [3].
In the principal resonance island, the electron moves back
and forth along the polarization axis of the microwave
exactly at the microwave frequency (being phase locked)
and comes every period close to the nucleus Thus it is
vulnerable to a direct optical excitation from low lying
atomic states. However, the stable resonant island sup-
porting the wavepacket states in the simplified one-di-
mensional (1D) hydrogen atom model where the motion
is restricted to the polarization axis, becomes a separatrix
for the three-dimensional (3D) realistic model: the stable
periodic orbit in 1D turns angularly unstable in 3D [3].
Stabilization of the angular motion is possible by ad-

ding an additional static electric field directed along the
microwave polarization axis as shown in a different con-
text by Leopold and Richards [11]. The same combina-
tion of microwave and static fields can be used to control
the trajectories followed by strongly localized wavepack-
ets, from a circular orbit in pure microwave field (such a
wavepacket was already discussed in [12]) via elliptical or-
bits of different eccentricity to a straight line motion along
the polarization axis.
To test this proposition, we consider a classical hydro-

gen atom in static electric and microwave fields along the
same Oz direction with the Hamiltonian (in atomic units):

H =
p2x + p

2
y + p

2
z

2
−
1

r
+ Fz cosωt+ Ez, (1)

where F is the amplitude of the microwave and E the
static field. Lz is an exact constant of the motion, we
take Lz = 0 in the following, the generalization of the
results for arbitrary Lz being straightforward. We con-
sider situations where both the static and the microwave
fields can be considered as perturbations of the Kepler mo-
tion of the electron. We thus express the Hamiltonian in
action-angle variables of the unperturbed hydrogen atom:
these are the total action J (corresponding to the principal
quantum number n) and the conjugate angle Θ describing
the radial motion. To describe the angular motion, we use
the total angular momentum L and its conjugate variable
ψ, the angle between the Runge-Lenz vector (along the
major axis of the unperturbed elliptical trajectory) and
the z axis. In the absence of external fields, J , L and ψ
are constants while Θ evolves at the classical Kepler fre-
quency ωK = 1/J

3. We will consider the 1:1 resonance
with the microwave frequency. The general case of m : k
resonance will be discussed elsewhere [13]; recent experi-
mental results [14] on this system have shown the impor-
tance of classical trajectories resonant with the microwave
frequency: they contribute dominantly to the quantum dy-
namics, for example in the density of oscillator strengths.
Similarly to the approach used in [11], we use the secular
perturbation theory in the vicinity of the 1:1 resonance at
first order in F. The fastest motion along the Θ coordi-
nate is removed by passing to the “rotating” frame and
averaging the Hamiltonian over the fast motion. Note that
“rotating” frame means here a canonical transformation

removing the fast motion and not a frame rotating around
the field axis. The next step is to expand the Hamiltonian
around the center of the resonance island located at the
principal action J = n0 = ω

−1/3 keeping terms quadratic
in J̃ = J − n0 and linear in F and E. This yields the
approximate resonance Hamiltonian:

Hres =−
1

2n20
− ωn0 −

3J̃2

2n40
+ EV0 cosψ

+
F

2
[V1 cos(Θ + ψ) + V−1 cos(Θ − ψ)], (2)

Vk are the Fourier coefficients of the perturbation; V0 =
−3en20/2 and

Vk(n0, L) =
1

k

[
J
′

k(ke) +
L

n0e
Jk(ke)

]
n20, for k = ±1,

(3)

with e =
√
1− L2/n20 being the eccentricity of the clas-

sical elliptical trajectory and Jk(x) and J
′

k(x) standing
for the ordinary Bessel function and its derivative, respec-
tively. A shorthand notation

Γ =
1

2

√
V 21 + 2V1V−1 cos 2ψ + V

2
−1

and tanβ =
V−1 − V1
V1 + V−1

tanψ allows us to express (2) as

Hres =−
1

2n20
− ωn0 −

3J̃2

2n40
+ EV0 cosψ

+ FΓ (e, ψ) cos(Θ − β). (4)

This classical Hamiltonian has a scaling property: the n0
dependences of the various terms in equation (4) can be
factored out, resulting in a classical dynamics depending
only on the scaled quantities E0 = En40, F0 = Fn40 and
L0 = L/n0. The crucial point noticed in [11] is that, for

moderate F values (F0 � 1), the radial motion (in J̃ , Θ)
and the angular motion (in L,ψ) have very different fre-
quencies:'

√
F0ω for the fast radial motion and' F0ω for

the slow angular motion. This has been used in [11] to esti-
mate the ionization thresholds using the Chirikov overlap
criterion (for similar treatments for other microwave po-
larizations see Refs. [16,17]). We can go beyond this analy-
sis and use an approximate adiabatic analysis to semiclas-
sically quantize the levels of interest. Such an approach
has been shown in excellent agreement with exact quan-
tum data for E = 0 [15] providing further justification for
the results shown.
The fast radial (J̃ , Θ) motion is described by a pendu-

lum Hamiltonian, see equation (4), with the potential part
being dependent on ψ and L (via the eccentricity e). The
semiclassical quantization of the pendulum Hamiltonian
is easily performed. As we are interested in the ground
state of the radial motion, an harmonic approximation for
the pendulum Hamiltonian is appropriate. This allows us
to write the Hamiltonian for the slow angular motion as

Hslow = −
1

2n20
−ΩI + FΓ (e, ψ) + EV0 cosψ (5)



K. Sacha et al.: Controlling nonspreading wavepackets 233

Fig. 1. Contours of the classical Hamiltonian, equation (5), de-
scribing the slow angular motion of the electron of an hydrogen
atom exposed to collinear static and resonant microwave elec-
tric fields, in the (L0, ψ) plane (L0 is the scaled angular momen-
tum and ψ the angle between the major axis of the elliptical
trajectory and the field axis). The plot is for principal quantum
number n0 = 60, scaled microwave field F0 = 0.03 and scaled
static field E0 = 0.12F0 < Ec (a), and E0 = 0.25F0 > Ec
(b). The lighter the background, the higher the energy. The
contours are plotted at the semiclassically quantized values of
the energy and thus represent the 60 states of the hydrogenic
manifold. Observe the motion of the stable island along the
ψ/π = 1 line corresponding to the highest lying state in the
manifold.

where I is the action variable of the harmonic motion
in the resonance island at frequency Ω =

√
3FΓ/n20

(the term −ωn0 has cancelled out by passing back to
the laboratory frame). The standard WKB quantization
of this motion yields half-integer quantized values of the
action I, i.e. I = 1/2 for the minimal wave packet we are
interested in.

The slow angular (L,ψ) motion, generated by Hslow,
takes place along curves of constant Hslow(L,ψ), see

Figure 1. It is easy to check that:

• For E0 = 0 (microwave only) two stable fixed points
exist in the (L0, ψ) plane, corresponding to stable mo-
tion along two resonant periodic orbits. The first one
corresponds to a maximal angular momentum L0 = 1,
e = 0, i.e. a circular orbit. There, the angle ψ is a
dummy variable since the direction of the major axis
is not defined. The nonspreading wavepackets local-
ized on such an orbit have been discussed in [12].
The other stable fixed point corresponds to L0 = 0,
ψ = π/2, representing a motion along a straight line in
the plane perpendicular to the polarization axis. The
corresponding wavepackets are only weakly radially lo-
calized since Γ (e, ψ) vanishes at the fixed point, lead-

ing to a small (J̃ , Θ) resonance island in its vicinity.
• For 0 < E0 < Ec (with Ec given below) a stable
fixed point exists for ψ = π and L0 decreasing with
increasing E0; it corresponds to a stable resonant ellip-
tical trajectory with major axis along the microwave
polarization axis. Thus, by adding a static field, the
wavepacket found in [12] can be, in a controlled way,
smoothly “moved” from a circular to an elliptical tra-
jectory. Simultaneously the fixed point at L0 = 0
moves from ψ = π/2 to lower ψ values; it corresponds
to a straight linear orbit tilted with respect to the po-
larization axis.

• For E0 > Ec, the fixed points reach their extremal
positions. Now, the stable points are at L0 = 0, ψ =
0, π corresponding to straight linear orbits elongated
along the polarization axis. The motion is fully stable
in all directions and the approximate one-dimensional
description of the system possible [11]. The angular
motion is very similar to the pure static Stark case.

The critical field value is

Ec=
2

3

∣∣∣∣∣F0J
′
1(1)−

√
3F0J ′1(1)

4n0

∣∣∣∣∣≈0.217F0 − 0.164
√
F0

n0
·

(6)

In the semiclassical limit n0 → ∞, we recover the purely
classical value for the stability of the 1D motion found in
[11].
The semiclassical quantization of the slow motion is

done using the standard semiclassical prescription [18],
i.e.
∮
Ldψ = 2π(p + 1/2) with p an integer. It has to be

carried out numerically because of the complicated func-
tional dependence on L,ψ in equation (5). The contours
corresponding to the quantized values for n0 = 60 are
shown in Figure 1. Note the strong localization in L, ψ
for states lying in the vicinity of stable fixed points.
Figure 2 represents the semiclassical energy levels ob-

tained for a fixed microwave amplitude F0 = 0.03 while in-
creasing E0 from 0 to 2Ec for n0 = 60. Note that, because
of the explicit time-dependence of the Hamiltonian, these
are rather quasi-energies of the Floquet states (dressed
states). For large E0 the levels are practically equidistant
- the manifold is similar the one observed for the Stark
effect. The separatrices dividing the phase space appear
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Fig. 2. The semiclassical energy levels of the n0 = 60 res-
onant hydrogenic manifold as a function of the ratio of the
static electric field to the microwave amplitude for F0 = 0.03.
The insert shows the scaled angular momentum L0 of the sta-
ble fixed point (L0, ψ = 0) as a function of the same variable.
The corresponding trajectory evolve from a circular orbit con-
taining the polarization axis to a straight linear orbit along
this axis via intermediate elliptical orbits. Above E0 = Ec the
stable fixed point is located at L0 = 0. The corresponding
wavepacket state, localized in the vicinity of the fixed point, is
the highest lying state in the main figure. For E0 > Ec, it is a
completely localizad wavepacket in the 3 dimensions of space,
which propagates back and forth along the polarization axis
without spreading.

clearly in the plot as a series of avoided crossings. The
uppermost state - an analogue of the blue shifted Stark
state - is the wavepacket localized on a circular orbit for
E0 = 0, then on a elliptical trajectory with eccentricity
increasing with E0, and finally, for E0 > Ec on a straight
linear trajectory.

Such a blue shifted wavepacket should be easily acces-
sible to experiments. A direct optical excitation from low
lying states is possible. Another way of preparing such
a wavepacket would consist of the excitation of a blue
shifted Stark state followed by a smooth turn on of the
microwave. Then, to reach the wavepackets localized on
elliptical trajectories, one may decrease the static field be-
low Ec sufficiently slowly to pass adiabatically the avoided
crossings around Ec.

To conclude, we have shown by a semiclassical analy-
sis of the slow secular motion for the 3D hydrogen atom
that the presence of a static electric field collinear with a
linearly polarized microwave field allows for the full con-
trol of trajectories on which the nonspreading wavepacket
moves. For sufficiently large static fields (above Ec, about
22% of the microwave amplitude) the quasi-1D motion
along the electric field direction is stable enabling the cre-
ation of nonspreading wavepackets, strongly localized in
all directions. These wavepackets should be much easier
to excite experimentally than the wavepackets moving on
circular orbits [2,6,7,12]. Finally let us point out that

absorption/emission properties of such a wavepacket
should be quite fascinating from the quantum optics point
of view. The enhancement of the absorption/emission
probability occurs when the electron is close to the nu-
cleus. Thus one may expect a time-dependent rate of such
processes and non-lorentzian spectral profiles. Study of ab-
sorption/emission properties of such wavepackets is under
progress.
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